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LETTER TO THE EDITOR 

Tensor operators and the trace metric 

J Killingbeck 
Physics Department, University of Hull, Hull HU6 7RX, UK 

Received 3 October 1975 

Abstract. The traditional unit tensor operators are shown to be orthonormal vectors in 
a trace metric approach. The operator equivalents of crystal field theory are used as models 
of the tensor operators which act as generators in Lie group theory. 

1. Introduction 

Many of the Lie groups used in physics are most easily defined and visualized in terms 
of matrices (eg SU3 is the group of 3 x 3 complex unitary matrices with determinant + 1 ) .  
The infinitesimal generators of the group then arise naturally when we consider group 
elements in the neighbourhood of the identity element, which is a unit matrix. These 
generators form a Lie algebra under the commutation operation. An alternative 
approach (Judd 1963) is to use unit tensor operators of the rotation group 0(3) ,  and to 
construct families of these operators which are ‘closed’ with respect to the commutation 
operation. The connection between the two approaches is as follows, for the illustrative 
case of U3 (Killingbeck 1975); the matrices of the eight tensor operators of type Tg, Ty,  
T‘; within the L = 1 manifold are (when suitably scaled) the matrix generators of the 
group U3 of 3 x 3 matrices. This simple point can cause confusion if not clearly noted ; 
for example, in Judd’s book (1963) the symbols Vf)  which appear throughout chapter 5 
are perhaps better regarded as matrices than as operators. Equation (5.14) of that book 
resembles an operator identity, whereas it is a tensor operator commutation rule which 
holds only for certain operands. We can illustrate this as follows. The major feature 
of the operators used is that they are diagonal in total angular momentum and in other 
quantum numbers. We can satisfy this by using as models the operator equivalents 
which are popular in crystal field theory (eg Stevens 1952). The simple operators L: 
and L?. will serve to represent operators of types T: and TY2 ; we quickly find the follow- 
ing identities within the manifolds L = 2 and L = 1 : 

84Lz-8(5L;- 17L,) ( L =  2) 

(L = 1) .  
5[z:, L?] = 

These results show that there is a T! component in the operator commutator, but that 
this is ineffective if the restricted L = 1 manifold alone is used. The present letter is 
‘inter-disciplinary’ in that it uses the operator equivalents of solid state theory to explore 
a few points in Lie group theory; it also uses a trace metric approach, which should be 
useful to workers in several areas of theoretical physics. In 5 2, we derive a useful sum 
rule which characterizes the unit tensor operators, and give a few examples of these 
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operators. In Q 3 we introduce the trace metric, show its relation to the tensor operator 
theory, and illustrate its usefulness by means of a few examples. Section 4 treats some 
ideas from Lie group theory, and Q 5 gives the trace metric approach to the group G2. 
Our intention is to report these useful techniques briefly so that other workers may be 
encouraged to develop and apply them. 

2. Unit tensor operators 

The basic theory scattered through the papers of Racah is neatly summarized in Judd’s 
book (1963). The unit tensor operators of the theory are diagonal in L, and have the 
following matrix elements, obtained by combining equations (2.27) and (5.13) of Judd : 

(2n + 3 L + n - M  = (-1) (4) 

To obtain (4), we use the permutation symmetry properties of the 3j-symbol, and using 
the well-known orthogonality sum rule for the 3j-symbols gives us 

This useful result will fix the form of our operators to within a phase factor. For example, 
if we set TI = AL,  we find from ( 5 )  

+ L  

1 = A’ 1 M 2  = fL(L+1)(2L+1)A2 
M = - L  

which is in accord with Judd (1963)and Wadzinski( 1969). Setting T ;  = B[3LS - L(L + l)] 
gives 

1 = &2L--l)L(L+ 1)(2L+1)(2L+3)B2 (7) 

and so on. It is easier to get the form of the operator for a specific L value than to take 
a general L. For example, the operator equivalent for T! is 5L: - 1715, within the L = 2 
manifold, as already used in equation (1). We set T i  = C(2)(5L; - 17L,) and obtain 

(8) 

where we set F ( M )  = ( 5 M 3  - 17M)’. The L dependence of the coefficients for higher 
rank operators T r  is as would be anticipated from equations (6) and (7), by adding 
factors at each end of the product. 

The operators L: , LT , are proportional to the unit tensor operators T;; T,”, and 
this fact will be used in the later discussion. We should indicate briefly how the more 
complicated operator equivalents of type T;  can be found without any use of classical 
Legendre polynomials, since this makes the techniques of this paper completely self- 
contained. One procedure is to set down the expansion 

(9) 

and choose A and B so that the operator has zero matrix elements for the manifolds 

1 = 2(F(1)+ F(2))(C(2))’ = 360(C(2))’ 

T! cc [L: + A U L  + 1)L, + BL,] 
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L = and L = 1. This gives B = i ,  A = - 3 ;  if we wish to make even fewer assumptions 
about the form of T!, we can use the trace metric technique, as explained in the next 
section. 

3. The trace metric 

If we consider a set of bounded linear operators acting within afinite-dimensional space, 
then we can add the operators and form linear combinations of them in an obvious way. 
This gives us a linear space, which becomes an inner product space if we use the trace 
metric, ie we set 

A .  B = Tr(A'B). (10) 

This enables us to use all the traditional apparatus of quantum mechanical linear space 
theory, but with operators instead of wavefunctions as the elements of the space. We 
wish to specialize to thecase oftensor operators T," acting within the 2L + 1 dimensional 
space of states ILM). We can express the result (5) in the form 

Tr(T,"+T,") = 1. (1 1) 

This shows that the unit tensor operators as defined by Judd, following Racah, are unit 
vectors in the trace metric approach, but this fact does not seem to have been exploited 
in the published literature. The unit tensor operators are actually orthonormal, since 
only T: has non-zero trace, and zero resultant angular momentum is only produced by 
coupling two equal angular momenta. 

Corio (1968) has already used the trace metric concept in connection with the 
calculation of operator equivalents, but we adopt a different tactic here. To find T! 
we set down the expansion 

L: = aT!+bL, (12) 

and take the inner product with L, (in a general L space). We find 

Tr L: = b Tr Lf. (13) 

This kind of calculation involves the formulae for the sums of powers of the first L 
integers, but we can also use the convenient trace tables of Ambler et al(1962). We find 
b = f13L2 + 3L- 1) which when re-inserted in (12) gives us a T! component proportional 
to 5L5+[1-3L(L+ l)]L,. As an example involving a particular L value, we can find 
the T: operator equivalent in the L = 2 manifold. We set 

L: = aT,O+b(L:-2)+c (14) 

(using the correct L = 2 form for the T: operator). We find 

Tr L: = L' 

Tr(L:-2L:) = bTr(L:-4Lt+4). 

The final result is c = y ,  b = 9,  giving a TZ component proportional to 
35L: - 155L: + 72. 
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4. Generators for SU, 

We now use the trace metric technique to explore the relationship between different 
approaches to Lie group theory. We consider the two-dimensional isotropic harmonic 
oscillator, with Hamiltonian 

H = P~+P;+X’+Y’. (17) 

We can introduce the operator q(x) = P,+ix, and form qt(x), ~ ( y )  and qt(y). Any linear 
combination of operators of type qtq will commute with H .  We can form combinations 
with definite rotational properties, eg 

(18) 

(19) 

The symmetry operator (18)is of T’: tensor operator type, while taking real and imaginary 
parts of (19) gives us T: and T;’ operators. The interesting point here is that these 
three tensor operators give a genuinely closed system under operator commutation, even 
though the commutator of two T, operators might be expected to have a T3 component 
(it is identically zero in this case). The three operators give abstract commutation rules 
which are just those of ordinary angular momentum theory, and produce the dynamical 
symmetry group SU, for the system. 

To obtain the SUI matrix generators, we know that the operators L,, Li in the L = 1 
basis will suffice, but we could ask whether it is possible to follow the physical system 
more closely and use Ty , T:  operators. These operators will only give closed com- 
mutators within a restricted manifold; we take L = 1. We set 

rlt(X)rl(Y) - rl TY)rl(X) = 2i(XPY - YP,) = 2iL, 

(rlt(x)+irlt(y))(rl(x)+irl(y)) = ( P r  -P:)+(x2 -y2)+2i(P,P,+xy). 

[L:,L?] A T : + B L ,  (20) 

Tr(L,[L:, L?.]) = 8 = E Tr LI = 2B 

and find (for L = 1) 

(21) 

and A = 0 (as required by selection rules). We also have [L,, L:] = 2L:. Putting 
these results together we find that the three operators fL,, iL : ,  $LZ_ give the same 
commutation rules within the L = 1 manifold as do L,, L ,  , L- , respectively. For the 
case of the three-dimensional isotropic harmonic oscillator, the dynamical symmetry 
group contains a set of operators of type TT, TT, T:, closed under commutation 
(Killingbeck 1975). The relevant group is U 3 ,  and the generators can be alternatively 
obtained by using T;, TT and T: tensor operators of 0(3) ,  restricted to the manifold 
L = 1. If the two-dimensional isotropic oscillator is anharmonic, then the dynamical 
symmetry group becomes smaller. The operator L, drops out, and only the operator 
H ,  - H ,  remains if we set the Hamiltonian equal to H ,  + H,. These two operators belong 
to the definite reps B2 and A I  of the group C,, , In general, if an operator X belongs to 
the dynamical symmetry group, and if the Hamiltonian has some geometrical symmetry 
group with elements G J ,  then G;’XG, will belong to the dynamical symmetry group. 
We thus expect the dynamical symmetry operators to fill complete rep families of G 
(eg the three-dimensional harmonic oscillator has complete T,, TI and To families of 
symmetry operators ; if the oscillator is anharmonic, we expect complete families of 
octahedral group rep types). 
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5. The Lie group G ,  

We consider now the L = 3 manifold, and investigate the commutators of two T, type 
tensor operators. We take the following representative case : 

[L:,L5_] = A T : + B T : + C T : .  (22)  

Tr( T:[L: , L?])  = B Tr( T!+ T:). (23) 

2( 331L: L? 133) (( 331 T:133) + (32) T$32)). 

To extract the T $  part we use the trace metric: 

The trace on the right-hand side is positive; that on the left equals 

(24) 

Using the operator equivalent for T i ,  we find that the term in parentheses equals zero. 
This gives us a very simple proof of the closure of the T5 and TI families under commu- 
tation, which is basic to the theory of the group G, (Judd 1963). If we wish to use the nj 
symbolism, we have to use the equality of two 3j-symbols rather than the vanishing of a 
6j-symbol. 
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